
HMMMHHMm 

ELASTIC-PLASTIC   RESPONSE   OF   STRUCTURES 

TO  BLAST  AND   IMPULSE   LOADS 

o 
f Joshua  E.   Greenspon,   Dr.   Eng. 

C 
^ STiATEMJENT NO.   1 

Dlstrlbutloa of ihls rOCUfflont Is Unlimited 

Ballistic Research Laboratories 
Aberdeen Proving Ground 

Contract No. DA-18-001-AMC-1019 (X) 
Tech. Rep. No. 7 

March, 1967 

Reproduction in whole or in part is permitted 
for any purpose of the United States Government. 

J G ENGINEERING RESEARCH ASSOCIATES 
SBJI   MtNLO   DRIVE BALTIMORE  IS. MARYLAND 

u \^ 



ABSTRACT 

This report discusses the general types of failures of typical structures 
that are used in aircraft and missiles.  The theories of elastic and plas- 
tic deformation of these structures are presented and comparison with 
experiments of simple structures is given.  It is found that the side on 
impulse can be used together with rigid-plastic theory of buckled and 
collapsed cylinders to predict plastic deformation for a wide range of 
pulse durations.  For beam type structures the impulse and rigid plastic 
approximations seem to only hold for pulses of very short duration. 
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LIST OF SYMBOLS 

Energy delivered to structure from explosion 

Work done by internal forces while structure is deforming 

Lateral velocity of structure (i.e. velocity perpendicular to 
surface of structure) 

Impulse per unit mass applied to structure 

Kinetic enerny imparted to structure 

Mass per unit area of structure 

Maximum value of impulse per unit mass 

Function describing distribution of impulse over structure 

Total impulse imparted to structure 

Impulse per unit area 

Loaded area of structure 

Variation of potential energy 

Symbol indicating an integral over the volume 

Symbol indicating an integral over surface 

AJ&JCJD... Constants in the expansion of internal work as a function of maxi- 
mum lateral deflection 

Maximum lateral deflection 

Pressure on the surface of a structure (a function of area loca- 
tion, denoted by A, and time) 

Lateral deflection distribution over the surface of the structure 

Initial values of maximum deflection and velocity 

Lateral deflection of structure 

Contribution of the nth term in the series to the lateral deflec- 
tion 

Function describing the distribution of the deflection in the nth 
term of the series representing the total lateral deflection of 
the structure 

Weight of explosive charge 

Distance from explosive charge to target 

Energy flux (energy per unit area) directed toward thf target from 
the explosion 

-^ 
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fCA) 
• 

-w 
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A Air density 
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Cm Sound velocity 

^9 Amplitude of the exponentially decaying pressure 

& Decay constant of exponentially decaying pressure 

^ Ambient pressure 

je. Scaled distance (it is actually a dimensionless number equal to 

£ Modulus of elasticity of structural material 

-Zg/jeJ Moment of inertia distribution of beam type structure 

hftt.) Width of beam structure (a function of x.   ) 

M(&) Resisting moment at" hinge 

M*       Resisting moment for rth segment of the M-© curve which is approxi- 
mated by a series of linear segments 

Ap^ Cf.    Constants involved in the representation of the resisting moment 
in the rth linear segment 

w?       Hinge angle corresponding to the rth linear segment of the M-e 
curve (moment - hinge angle curve) 

X.^       Distance from the root section of the beam to the point where the 
hinge forms 

^Ä // Stiffness constants of an equivalent orthotropic plate 

•W;.^*)Function describing the amplitude and shape of the i'*^ term in the 
*   double series representing the deflection of the plate 

'(tft) Pressure on the plate as a function of space and time 

Gfy^.)   Function representing the spatial distribution of the pressure on 
the plate 

ffa)      Function representing the timewise distribution of the pressure on 
the plate 

Xi, Y:    Beam functions representing the ijth shape of the plate in the x 
and y directions' respectively 

a. 

Frequency numbers associated with the ith and jth beam functions 
respectively 

Width of the plate (shorter side) 

Length of the plate (longer side) 

Second derivativä of the beam functions with respect to x and y 
respectively 

0; ■ V GK ^-^JLO* ^ör*>.J tä?"        for biaxial stress systems 
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(5J 0^ ^L Stresses in plate or shell; 
shear stress 

for biaxial stress systems 

^  7" 
are normal stresses; ^«7- 

Strains in plate or shell; 
^Js-, shear strain 

'« €U-. are normal strains; 

2-    Distance of any element of plate to neutral plane 

A Parameter describing a linear hardening material; if -X = 0 the 
material is elastic; if A = 1  the material is perfectly plastic 

Of QZ Yield stress 

^ Yield strain 

^t Thickness of surface plating in a stiffened plate 

0£ Ultimate stress 

TU 7-% Tensions in x,y directions of an "equivalent thickness" plate 

Jl^Jij, Equivalent thicknesses of plate in x.y directions respectively 

t Thickness of cylindrical shell 

£L Radius of cylindrical shell 

^ Diameter of cylindrical shell 

/I Length of cylindrical shell 

«' =  «/i 
X, ^       Cylindrical coordinates 

Length of hinge  line  in  a  collapse pattern 4i 

p = 

Parameter describing the dejay of the buckled deflection around 
the periphery of the cylindrical shell 

Distance from the edge of a supported shell at which uniform de- 
formation starts in a shell loaded by sptayed explosive 

Mass density of shell material 
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I. Introduction 

There are two central aspects involved in calculating the response of 
structures to blast or other impulsive loading which deforms the struc- 
ture,,  The first aspect is the description of the loading and the sec- 
ond is the method of obtaining the elastic and plastic response once 
the loading is known.  The classical method of obtaining the response 
of any structure is to determine the differential equations governing 
the behavior of the structure and solve these by some technique such 
as a finite difference procedure, the Galerkin method, or obtain exact 
solutions if possible.  Such classical solutions are based upon the 
premise that the loading on the structure is known completely, i.e. 
that its amplitude and its spatial and temporal characteristics are 
known.  There is much work to be done in determining both the loading 
and the response to a completely defined load; especially to the point 
where the analysis can be used with complete confidence in practical 
situations.  It is the purpose of this report to review some of the 
recent procedures that have been suggested in the past several years 
for computing the loading and response of beam type, plate type, and 
shell type structures and to point out some of the advantages and short- 
comings by comparing the results with some available experimental re- 
sults. 

II. Damage in structures 

A. General considerations 

Often in the field of blast damage the terms critical impulse or cri- 
tical pressure are used to denote values for which the damage reaches 
a certain approximate value.  The concept of critical values is ex- 
tremely valuable in experimental studies -such as those conducted on 
full scale structures or those conducted by Schuman '^'J  on model 
shells.  However one can and should expect more from a theory than 
just to predict critical values.  In fact due to the inherent non- 
linearities in structures the answers that one obtains in the large 
deflection region is a dependency between load (or some function of 
load) and deformation. 

B. Types of failures 

1. Beam type structures (wings, control surfaces, slender missiles, 
slender fuselages) 

In structures which can be replaced by a line with appropriately 
distributed mass and inertia properties the elastic and plastic 
behavior is rather straightforward.  The structure behaves elas- 

*Superscripts refer to references listed at the end of the report. 
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tically and responds in its modes until the yield point is reached at 
some section of the beam. At this Section a hinge forms and the struc- 
ture deforms plastically around this hinge as shown in Figure 1. 

la» Elastic Response of 
a Cantilever 

lb. Elastic Response of a 
Free-Free Beam 

1c. Plastic Response of 
a Cantilever 

Id. Plastic Response of a 
Free-Free Beam 

Fig. 1 Typical Response of a Beam Type Structure 

Since these problems are one dimensional and usually involve only one 
plastic hinge they can be solved by starting with the differential 
equations of an elastic beam in bending.  An investigation was under- 
taken several years ago to study such problems and a general computer 
program was developed to solve this general type of problem.  This area 
has been under investigation for a number of years and there have been 
many papers written on the subject.  From a practical standpoint this 
type of problem is fairly well in hand at the present time if the load- 
ing on the structure is adequately defined. 

2. Plate type structures (Parts of fuselages, plate type control surfaces, 
plating between longitudinal and transverse stiffeners) 

The flat elastic surface has one more spatial dimension than the beam 
but its elastic and plastic deformation characteristics are many times 
more complicated. In the elastic region the governing differential equa- 
tion usually has to be solved by a two dimensional finite difference 
network or by some approximate modal method since the exact solution 
can be obtained only for very few boundary conditions.  The classical 
plasticity problem, especially for the rectangular plate, offers an ex- 
tremely difficult problem even for very small plastic deformations. 
For that reason approximate approaches were developed several years ago 
for small and large elastic and plastic deformations of plates. 

■ 
5,6 
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Cylindrical Shells 

The elastic analysis of cylindrical shells has been the subject of many 
studies in recent years. However the only plastic problems associated 
with cylindrical shells that have been approached from the classical 
viewpoint of flow plasticity is the axially symmetric problem.  Other 
problems have been considered frcn the standpoint of deformation theory. 
The real problems in blast deformation of cylindrical conical and other 
types of shells or composite bodies are not axisymmetric and involve sit- 
uations where the pressure time relation on the shell is not easily ob- 
tainable.  This is the reason whv a work-energy approach has been follow- 
ed in several recent reports. '   In that work the asymmetry of the 
load and deformation was considered as well as strain hardening, large 
nonlinear deformations, and thermal aspects.  It was shown experimentally 
by Schuman '2'  that cylindrical shells under a blast which engulfs the 
structure either fails in a well defined buckling pattern or a collapse 
pattern.  Moreover, for loading which is more of a local type such as 
sprayed explosive the deformation was almost uniform along the length 
but changed rather abruptly to zero at the supported edges.  In addi- 
tion if the explosive was sprayed over half the periphery, then only 
this much deformed.  A representative pattern is shown in Fig. 2. 

•Stfc/,*- A-A 

r\ 
| A 

—A 

Fig. 2 Typical Deformation Pattern from Sprayed Explosive 
Over Half of a Fixed-Fixed Shell 

Deformation of composite structures 

Actual aircraft and missiles are composite structures which can be con- 
sidered, in an approximate sense, to be made up of beam, plate, and shell 
components.  In such structures several types of failure may occur si- 
multaneously, and for this reason careful judgement should be exercised 
in evaluating the blast resistant characteristics of such built-up struc- 
tures.  For example, an aircraft is composed schematically of a beam 
type fuselage which is built-up of a shell with ring and longitudinal 
stiffeners.  The wings can be considered as beams with variable mass and 
stiffness.  The fuselage can be considered as a shell or a beam when ex- 
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posed to an engulfing blast which loads the entire structure but it can 
also be Corisidered as a series of stiffened and unstiffened panels.  By 
the same token, the wings, elevator and stabilizer act either as beams 
or a series of panels. 

In general we can divide the deformation into primary, secondary and ter- 
tiary components as was done for elastic deflection of ships a number of 
years ago.   The primary deformation consists of deflection of the entire 
structure (wing or fuselage) as a beam.  The secondary deformation invol- 
ves deflection of entire stiffened plate or shell sections and the ter- 
tiary deformation involves deflection of plating between stiffeners or 
shell deformation between rings. 

It is important to look critically at each type of failure to see if it 
would kill the utility of the structure in performing its mission.  Re- 
ferring to Fig. 3 it is seen that deformation can take place in the follow- 
ing ways: 

1. Overall hinging of the wing, rudder and stabilizer 
2. Deformation of the panels contained in the fuselage, wing and tail 

assembly 
3. Buckling or failure of a section of the fuselage and consequent hing- 

ing of the fuselage around the weakened buckled section 

In a missile type structure shown in the same figure the deformation 
patterns are similar. 

Lumped parameter vs. classical theories 

In classical theory the differential equations of the structure are set 
up for the elastic and plastic ranges and the appropriate pressure dis- 
tribution in space and time is uped.  The resulting answers are deflec- 
tions, stresses, and strains as a function of time at many locations on 
the structure.  This type of theory for predicting elastic and plastic 
behavior is practical for beam type structures where only one deflection 
and only one space dimension is present.  For plate and shell structures 
where two space dimensions are present and more than one deflection may 
be necessary to describe the behavior of the structure, the analysis is 
many times more involved.  For many cases such as large lateral deforma- 
tions of plates and cylindrical shells an equivalent energy procedure and 
variational approach such as used in previous reports10 offers many sim- 
plifications.  In the equivalent energy approach the estimated energy de- 
livered from the explosion is equated to the internal work done by the 
structure in plastically deforming.  The main unknown which has to be in- 
serted into the theory is the deflection pattern in the plastic region, 
which is determined from tests.  Once this deforiu.^tion shape is defined, 
it is straight  forward to compute the work done by internal forces in 
the structure to deform plastically in this pattern.  In many cases it is 
the maximum damage or plastic deformation which is of primary significance, 
The lumped parameter or energy type analysis is capable of predicting the 
necessary informaton for many situations. 
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Panel Defonuations 

Fig. 3 Schematic of Various Types of Failure 
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It will be   seen  lat^r  that   for  short pulses the above  impulse  or energy 
approach  is accurate,   but   for   some  cases   involving  longer duration blasts 
we have  to make  recourse  to a more   accurate procedure which  uses the  spa- 
tial and time characteristics  of the load.     The analysis which  fits this 
qualification  is the  variational approach.     In  this approach  a variational 
principle  associated with  deformation tVpe   (as  opposed  to flow type)   plas- 
ticity  is  used;   the  principle   is essentially Hamilton's principle   inter- 
preted  for   the  plastic region. 

IV.   Fundamental energy-impulse  relations and   the variational principle 

A.   Energy -  impulse 

Let V represent the work done by the   internal  forces while  the   struc- 
ture  is  deforming  and let E  represent   the  total  energy delivered to 
the  structure  from the  explosion;  then  the   fundamental energy relation 
that will be  used   is as  follows: 

E=V in 
For  cases where  the  impulse   is  given   or can be  obtained more easily 
than the energy,   an alternate relation  is derived below. 

Let I be  the   impulse per unit mass applied  to the  structure.     The  im- 
pulse momentum relation  for  an elemental mass dm can be written   (ne- 
glecting the  tangential  and  longitudinal velocity,   assuming that the 
lateral  velocity, ypu" is much greater   than the other  two) 

/t/v-T (s/v*",     =     ^ «s/v* 
Thus 

=    X [2] 

[3] 

where ^A*?*-, -*) is the mass per unit area of the structure (which can 
vary) and dA is an elemental area. The impulse can vary over the sur- 
face  so write  it as   follows: 

irr*,?) = jr0sr*t#) [4] 
Thus 

Equating this  initial Kinetic energy   to the energy of deformation ab- 
sorbed by the  structure  the  expression  for  the   impulse per  unit mass 
becomes 

The Kinetic  energy  imported  to  the structure  is 

2.V 

£*'<.}.) fy*.})<** [6] 
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The total  impulse on  the  structure will then be 
2 V 

-Ä^/J/^I/)^ 

2.   V 

The impulse per  unit  area will be 

If both  the mass  per  unit  area and the impulse   are uniform then 

S*t?)dA 
[7] 

[8] 

[9] 

where A  is  the  total   loaded area  of the structure. 

B.  The variational   approach 

The principle of  extremum potential  energy can be applied to  the plastic 
regime   if we  are  dealing with a plastic deformation  theory   (i.e.  not a 
flow theory)   as we are  in  this work.     Greenberg   2 states   this  principle 
as  follows: 

S [ul »O 

The  integral  over   \/' is the  potential  energy or  work  done  by  the internal 
forces   during deformation  and the integral  over   3L    is the work done by 
the external   surface   forces  which give rise to   the  internal  forces. ' 

The dynamic  counterpart of   the principle  of extremum potential  energy is 
Hamilton's Principle       which can  be   stated  as   follows: 

[10] 

[in 
where  T   is  the Kinetic energy and V  is the potential   energy minus  the work 
done by  the  external   forces. 

We  are   dealing with large   lateral deformations   of thin walled   structures 
where we know the deformation pattern  from test   results but the amplitude 
of  lateral  deformation,   w,    is inknown.     If we neglect  the   longitudinal 
and tangential  inertia  terms  the  Kinetic  energy   of the structure becomes 

s { JTMC/D^T^A 
s&X   = mass per unit area of  the  structure 

c/A = element  of  surface  area 

-"•vT ■ velocity normal   to  surface   of structure 

= ^^ftJjrflJv/here Ä^f-t) denotes   the   time   dependency  of  the deflec- 
tion and £fA) denotes  the  space  dependency 

[12] 

The variation is   taken  just  as in the  elastic problem as  given  in Love. 13 
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This problem  is equivalent  to the   following problem in  the   calculus of 
variations: 

Find the   function y(x)  which takes  on a given value   for ^t = a  and b 
and which minimizes  the  definite  integral 

x'-jfrfK.f,?)*** [i3] 
The  result  is  that F must  satisfy the Euler equation 

In   jur case * 

[15] /r  =   T-.U 

Thus we have 
"T =  f fs* (A) ^ %<4 r ±fMm)*rjY*) / >5#J J* [ 16] 

In general we  can  fit a power   series  to the potential energy   (or work 
done by the internal   forces) 

W  =j£'?f*j*>'UJ~* HAMA [18] 
where   '»CA.'t)     is  the pressure applied  to the surface   of the  struc- 
ture 

The  result is  the  following nonlinear differential  equation in time for 
the   unknown  -Wi 

*J\ [MCA* f*fAMA ^r&-l-^CMrt4.35^i\-J mfpfA,*)frA)4A       rl9] 

The   initial conditions are 

^l^o) ~ ^        j ^r*) ^ ^ [2°] 

where ^% and -^i are the deflection and velocity at the beginning of 
the plastic regime which are determined from the elastic analysis when 
the yield point is reached. 

Instead of the deflection being a function of one particular shape 
supposing 

[21] 

[22] 

then 

Unless we assume complete decoupling among the terms the problem will get 
completely out of hand; thus we will assume that this problem reduces to 
finding the set of >••£/"«■ satisfying 

-8- 
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A-J: 

with initial conditions on displacement and velocity determined from the 
end of the elastic region. 

V. Description of the parameters associated with the loading 

A. General problem 

Since the structure reacts wi^-h the blast it is usually very difficult 
to determine the complete spatial and temporal characteristics of the 
pressure which acts on the structure.  When the blast comes in contact 
with the structure it diffracts (bends) around the structure in a very 
short time and then produces a drag type loading which lasts a much 
longer period.  In general even the deformation of the structure will 
effect the pressure distribution and in many cases involving control 
surfaces subject to Mast this is considered.  In many of the more 
complicated case' .t is possible to use some parameter to represent 
the load other than the pressure distribution itself, such as energy 
or impulse.  In such cases the structural theory must be altered accord- 
ingly in order to compute characteristics of the system, such as energy 
absorption, which are most easily integrated with this load parameter. 

B. Pressure distributions 

There are a limited number of cases where pressure as a function of 
ppace and time has been obtained for rigid bodies of various shape. 
The Nuclear Effects Handbook  gives a particularly good outline of 
the results to date.  A recent book by Kernhäuser - also gives pressure 
curves for some particular cases.  For aircraft and missile structures 
we can approximate the pressure distribution and time history by re- 
presenting the shapes of the various components of the structure by 
idealized shapes such as long slender boxes and cylinders and then use 
the pressure distribution for these shapes.  The wings and other con- 
trol surfaces of aircraft and missiles can be represented by flat beam 
type surfaces (long slender boxes) and the fuselages can be represented 
by cylindrical shapes.  The problem is one of finding the loading while 
the weapons are parked and when they are in the air.  The pressure time 
history for a blast on a parked vehicle is shown schematically in Fig. 
4. 

-0- 



Diffraction Phase 

/ 

Diffraction Pnase 

Prsssure   for Lifting 

Surfaces 

Pressure   for  Fuselages 

(Different plot  for  each 
angle arcund cylinder) 

Fig.   4     Schematic of Pressure Time History  for Parked 

Vehicles  and Non-Lifting  Bodies  Subject  to  Blast 

Fig.   5     Schematic of Pre.-.sure Tims History   for 

Lifting  Surfaces   in Flight   Subject  to Blast 
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The  various parameters associated  with  each  of these plots  can be obtain- 
ed  from the above mentioned reference      and work by Baker et.  al.      and 
Baker and Schuman.       Extensive data on incident and reflected pressure 
and  time duration of pressures associated with explosions of pentolite 
is  contained  in reports  by Baker,   et.   al.       and Goodman. The  use of 
this data will  be  illustrated later  in  the  report when   some   specific: 
problems are considered. 

During  flight   the problem has  to be handled as a  lifting body gust prob- 
lem and  typical pressure' time histories would look schematically as shown 
in Fig.   5    '        for lifting surfaces.    Although there is some lift on the 
fuselage  it is  believed  that  the parked condition can be used as  a first 
approximation. 

Energy and impulse of an engulfing explosion 

1.   Energy 

For blasts which are at some distance from the structure the blast 
wave engulfs the entire target when it reaches it.  The characteris- 
tics of the blast are described by a charge weight (or weight of ex- 
plosive) and a distance from the target.  The weights for nuclear ex- 
plosions are given in terms of equivalent weight of TNT. 4 For ex- 
plosions involving pentolite instead of TNT the conversion is that 
1.1 pound of TNT is equivalent to 1 pound of pentolite and the weight 
of pentolite in free air is equivalent to 1.8 times its weights on 
the ground.   For underwater explosions experiments have shown  that 
the energy flux density (energy per unit area) and the impulse per 
unit area before the shock wave 
functionally as follows: 

hits the structure can be written 

^4wi(^y [24] 

where C, k, ^ and if are constants which are determined by fitting ex- 
perimental results to the above relations, ^ Using the work of Baker 
and Schuman^-' a similar analysis can be made on air blast of pentolite 
explosive as will be shown below. 

22 
Following the reasoning of Keil,   if it ..s assumed that the blast 
wave is plane then the energy flux (energy per unit area) can be writ- 
ten 

^ *jk /r™* [25] 

where & is the air density, C0 is the sound velocity in the air and 
p(t) is the pressure at any given point as a function of time. If it 
is further assumed that the wave is exponentially decaying, then 

where p0 is the pressure amplitude at t = 0 and &   is the time con- 
stant of the decay.  Using the above two relations it is found that 

[27] 

-11- 

V  ' 



17 The  experimental curves  of Baker and Schuman       can  then be lused to obtain 
p0 and   ö" as a  function of charge weight and distance.     Substituting these 
extrapolated values  of p0  and    #    and using the appropriate value  for /^ 
and C0 the  following  final relation is  found  for the energy flux   (energy 
per unit area)   in the blast field at a distance R from the center of the 
explosion: 

*, ~ /f^,/0v£i; JGT   /*%. 

/*» 
[28] 

where R must be given in feet and W in ^. It is unfortunate that we 
have to attach specific dimensions to the input and that we have to mix 
inches and feet in the same formula. However, it is most convenient to 
present the relation in this form since it is empirical and was obtained 
by fitting the relation to data that was given originally in these spec- 
ific dimensions. 

2. Impulse 

Values of side 
fleeted from a 

on (i.e. incident) impulse and reflected impulse (i.e. re- 
target of infinite extent) were studied exten- 

air blast of bare spherical pentolite. 
formulas are as follows: 

flat rigid 
18 sively by Goodman  for free 

Goodman's 

Side on 

Reflected: f q/C.2. 

■] tlL r*ilti jee 

/k> 

j>**   L a"** 
7*0 r 

'"J 

f£o/ '1 /ill /*•</// sec 

[29] 

[30] 

***» 

where X is the impulse per unit area (in psi milliseconds) p0 is the am- 
bient sea level pressure in atmospheres, W is the charge weight in pounds 
and X is a dimensionless number equal to 

X~    ^/ssziW* 131] 
in which R is the distance from the center of the explosion to the target. 

D.  Impulse and energy content for local explosion (such as sprayed explosive) 

As was seen above, for explosions that are at some distance from the target 
the weight of explosive and distance away determines the energy content at 
any point in the field.  For impulsive loading or any type of explosion 
which is an integral part of the structure such as sprayed explosive,  the 
problem is not so straight forward.  In these cases it will be assumed that 
the impulse per unit area, TfK,*)     applied to the structure can be measured. 
Then the impulse relation in Section IVA can be employed to determine the 
deformation, i.e. 

If, '- ?> '**•*> V&wZJZ [32] 
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in whichy*i     is the mass per unit area, V is the energy absorbed and .^i;-J 
describes the impulse distribution.  If the impulse and mass per unit 
area are both uniform then the energy flux will be 

Work done by internal forces and coupling with the variational principle 

A. Beam type structures 

1. General 

The complete theory for hinging deformation of beam type lifting 
surfaces was derived by the MIT group     and by the present auth-. 
or.4,6  in the event that complete load-time histories are available 
it is certainly preferable to use the complete beam type theories 
mentioned above.  However for rough calculations and in cases where 
overall damage criteria are being sought a theory consistent with 
the impulse or energy approach and the variational approach discussed 
previously can be employed. 

2. Elastic region 

Before plastic hinging occurs, it is assumed that the beam vibrates 
in its elastic modes.  The kinetic and potehtial energy of the struc- 
ture in the elastic region can then be written as follows: 

-  i/'***>[*&*>]**. 
KE 

PE V 

Assuming a deflection of the form 

we then have (noting that cross product terms disappear due to or- 
thogonality of modes) 

[34] 

[35] 

;     •  a. •> 

[36] 

Substituting into Hamilton's principle (or into Lagrange's equations) 
we obtain the following differential equation for A^^fi) 

^*[jp**)*M>)**]***¥.[J[i3ito (ijll$l*}*ffa *)Ji*k)*to*t* [37] 

where ^^i-J is the mass per unit length, 'fif*,'*)      \B  t^e pressure, 
6 (M.)      is the local width of the beam.  The initial conditions 

under the assumption of blast loading are 

"^/W rr *Jr^ fc) 9 0 [38] 

3. Plastic region 

In the plastic region the potential energy is replaced by the work 
done at the hinge as follows: 

-13- 
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V 'j£ Me»>J* [39) 

where '*'&)     is tho resisting moment at the hinge.  The resisting 
moment is a function of &   and for most of the practical cases it 
will take one of the following forms shown in Fig. 6.  It is seen 
that the strain hardening and unstable cases are approximated by a 
series of linear segments.  Thus the most general expression for 
the hinge resisting moment, M, in each segment of the M-O curve can 
be written 

[40] 

Mr  ~   ^rä-f-Cr-   ^-Oj   Cr-nM   £» /H*A**'}   /»/*'+•*. 

Thus 

fir-, r  ^ '*,., 
[41] 

n 

Fig. 6 Schematic of Hinge Resisting Moment Curves 

The kinetic energy can be written 

T  =    ij[s**>)ff*~M+>fi3%JA [42] 

where ^ is the distance from the root section of the beam to the 
point where the hinge forms. 

Thus for the values of &    between #_, and ^ the equation of motion 
becomes 

#[j[M*)f*-*4&m3 +*t* + C   *j[p*K*)AlL)fkiM4jJ* [43] 
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Thus we have linear differential equations in both the elastic and plas- 
tic regions.  The one in the plastic region has to be solved piecewise 
for each segment. 

An altermate method of dealing with the plastic region is to represent 
the M- ^ curve by a power series in &   as follows: 

n ~ cc +0,0 +c^ax+.  -•- [44] 

The resulting differential equation is then the following nonlinear equa- 
tion       - 

The initial conditions for the plastic region are the displacement and 
velocity at the end of the elastic region.  If we use the linear seg- 
mented curve then the initial conditions for each segment are obtained 
from the final conditions of the previous segment.  Using the Allen in- 
terpretation of the "frozen hinge"^^ it is assumed that the final plastic 
deformation of the structure consists of a rotation around the hinge and 
occurs at the time when the angular velocity reaches zero for the first 
time. 

B. Plate type structures 

1. Elastic deformation 

For unstiffened or stiffened and sandwich plates the elastic behavior 
of the plate can be computed by using the theory developed in a paper 
by the author, published several years ago. The basic equations go- 
verning the behavior of the plate is the orthotropic plate equation 

4- US ' ^ "*$ *■   07-  7p  V ^ « ^ 9- *> [46) 

In the above mentioned paper the solution is given in detail for a 
rectangular plate under dynamic loading.  This elastic solution can 
be written as follows; 

where 

[48] 

[49] 

[50] 
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In the above equations DK^   /«L, and H are the orthotropic constants 
which can be determined from the analysis given in an earlier paper, 
yU   is the mass per unit area of the plate, ^'- is the natural frequen- 
cy of the ij.^   mode, ^i   and >^ are beam functions describing th» modal 
pattern in the x and y directions respectively, /^ and fL  are constants 
associated with these mode patterns, a is the shorter side of the plate 
(parallel to the x axis), b is the longer side of the plate (parallel to 
the y axis) , Cifx^)  describes the spatial distribution of the load and 
f(t) describes the timewise distribution. 

2. Plastic deformation 

The theory of plastic deformation of Isotropie and stiffened plates is 
given in a recent report.   The work of deformation, V per unit volume 
of an elastic-plastic body can be written 

ti 

where 

•        ^T"   

^v » ** + *++€% 
The relation between   (71  and   Zi   describes  the  stress  strain law of the 
material.    Assuming an  incompressible  material   (      0  = O    )   and consider- 
ing only plate  stresses, 

&\/0 = element of volume 

[52] 

where 

[53] 

If we consider  that only the  lateral deforn.ation, '<v; in of  significance 
and neglect  the  longitudinal deflection u and the  tiansverse deflection */" 
then the  strains ^ttj f- and    ^^   become28 

where   ^     is  the distance of any element of  the plate   from  the neutral 
plane as  shown  in  the  figure be\Low: 

1    \ i. 0 

[54] 

CZTTH 

"DT 

Fig. 7 Location of Plate Blement 
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Further restrict the material to one that obeys an elastic-linear harden- 
ing law as shown below 

01 

Fig. 8 Linear Hardening Stress-Strain Curve 

The stresses can be written in terms of strains as follows: 

in which the stress-strain law can be written 

[55] 

[56] 

where 

Substituting the linear hardening law into the fexpressions for the stress- 
es and then into the relation for V, we obtain the work done by the in- 
ternal forces on the plating of the stiffened plate 

*k 
[57] 

where £    is the distance from the neutral plane of the stiffened plate 
to the midaurface of the fac , h is the thickness of the plate and a,b 
and the width and length of the plate respectively.  If there is a top 
plate then there is a similar expression V2 that has to be added for this 
part. i.e. « + ^ 

<K>r ass/e^   *t   * *\t J [58] 
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Fig.   9 Nomenclature  for Top and  Bottom Plates 

Now  substituting the ejxpre^sion  for ^ 

5'4 / *j{ 
t|9] 

■*/■& st + A -/7/:^^^ 
[60] 

2' t 
Substituting the expressions for the strains in terms of deflections, 
we have __ /: 

- XT ^* **■ 
and a similar expression for V-  ^  two surface plates exist, 

In the above equation 

> - (^fpr^üc^H^r^) 

mtf^h' 

[61] 

For the stiffeners we use an analysis similar to that employed in ano- 
ther earlier reference 
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Fig. 10  Location of Stiffeners 

For a stiffener located at y = yr 

[62] 

^ 

Where A  indicates integration over the cross sectional area of the rth 
stiffener. 

For a stiffener located at x = x^ 
-6 

Vs ^/^/f^ V' e**'**]"'^-/*/***^^ [63] 

Where A^ indicates integration over the cross sectional area of the St^ 
stiffener.  Substituting the expressions for ^ty £•*■ 

We obtain 

[64] 

Now *, 

= the moment of inertia of the stiff- 
ener about its own neutral axis  r,-cl [b5j 

where *c is the distance from the 
neutral plane of the stiffener to the 
centroid of the stiffener ( = 0) 

Thus 

[66] 

The terms containing Ar are the contribution from stretching and the one 
cpntaining -Z^r is the contribution from bending. 
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Similarly 

67] 

These values of the work done and an appropriate series for the assumed de- 
flection can then be used with the variational principle or energy approach 
to determine the plastic behavior ot the plate. A particularly appropriate 
series for tne rectangular plate would be 

^rr*. **£ [68] 

This particular series can then be substituted into the internal work ex- 
pression, V,above and the variational principle as given by equation [14] 
can be employed to determine tne set ot /W^^'J (in this case mn takes the 
place of n in the general equation given by equation [23]).   In tne cases 
involving pulses whose duration are greater than the fundamental period of 
the plate we can represent /^J"   as a single term series 

^w-* **/; fa) 4^ ^ «x^, Z* 

An alternate approximation for xarge plastic detormations 

[69] 

As   is  seen in  the previous  sections tne  elastic  region  is characterized 
by bending only   (eq.    [46]   assumes bending  stresses only)   and  the  plastic 
region  is described by equations  involving both bending  and membrane de- 
formation.     The  large plastic deformation  ot plates  can be predicted by 
using only membrane  deformation.      ' The  equation describing  the  behav- 
ior  of an  isotropic,   cross  stiffened or  sandwich plate can be written as 
follows: 

where V ox w [70] 

OC is the ultimate stress ot the material and -^-A,, *'•*'   are the equi- 
valent thicknesses for stretching in the x and y directions respectively. 
The equivalent thicknesses for representative cases are given in the fig- 
ure be .ow. , ^.JC * 

15  
^1 ^ ^ 

Ä>1, 

Aj 

1*  

♦ 
•^ 

T 

T7 
Case A.  Stiffened Plate Case B.  Sandwich ^late 

K' At + Au +  4, -y- -i^r: J-*-~     *,* *: 
(A refers to cross sectional areas of stiffener») 

Fig. 11  Equivalent Thicknesses ot Plating 
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For an Isotropie plate the equivalent thicJcness is the actual thickness 
of the plate.  The beha/ior of Isotropie membranes under dynamic loading 
was studied by Baker and Hoffman30 some years ago and by this author 
more recently.  The solution of equation [7G] for a rectangular plate 
which has its edges supported can be written 

-ur^ £_ ZL *~~ u)^. ^p ^ ns* [7i] 

Substituting into the equation of motions multiplying both sides of the 
equation by  a*^ VZ**  ^w. f*"*' and integrating over the area 

of the plate we find that  4^m ft) satisfies the following equation 

f~ •' (%:*&'•*"•&)$" ^/J/^^^-^^^ [72) 

The solution can be written in the same form as the elastic solution given 
in the previous section of this report, i.e. 

*Wt *»•*  ••«     ^.^ J [73] 

>y 

where the load distribution  ff*.^   t-) was represented as follows: 

Ptkf,*)  - GrKf)S&) [74] 

and ^.^ is 

\ / ZL "****  y. _Z*: '^Xn * [75] 

Fitting the plate theories together 

The previous sections have given various theories for describing the re- 
gimes of plate deformation.  These theories can be used in conjunction 
with each other to follow the complete behavior of the plate from the elas- 
tic through the plastic region.  The procedure is as follows: 

a. Compute the elastic behavior up to the point where yield starts, then 

b. Using the initial conditions determined from the elastic regime and the 
plastic relations given in 2 or 3, determine the plastic deformation un- 
til the velocity of the plate reaches zero for the first time.  It will 
be assumed that the plate is "frozen" at this time in the same manner 
that Allen2 used in the beam case.  The final plastic deformation is 
then given by this frozen configuration. 
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C. Cylindrical shell type structures 

The theory of plastic deformation of cylindrical shells under short dur- 
ation impulsive loads has been given in a series of reports by the prc«- 
sent authot '   The general behavior was described in the earlier sections 
of this report.  The energy absorbed or work done by the internal forces 
during deformation is as follows: 

££V7~* - ete^r/f--* y= Bf>-x)-t*L 

[76] 

where 

-22- 



I 
\ 

In the above relations a linear hardening material was assumed as was done 
in the case of plates in previous sections of this report and it was assum- 
ed that the deflection took on a pattern A^TC ^^ rf^^ef)  where Ic' a ^/L.    - 
In these equations a is the radius of the shell, L the length, t the thick- 
ness, 0 Poisson's ratio . 

For collapse type behavior where the shell forms a hinge line straight acre 
the center of the shell on the side facing the blast, the deformation pat- 
tern is described as follows: 

For bvrkling the pattern is as follows 

e><. K *. 

-1<*.'<C, 

[78] 

-Atfi 

=  w; TT*.' e Cv*. ^fi-Tr-cf) 

[79] 

and finelly for a very short terras impulse where the shell is loaded over 
half the circumference and a "ring type" pattern results, we have 

Sec-J-,*^ A -A 

 * • «4; 
I     J 

•\ y 

h— — L —| ̂
A 

Fig. 12 Deformation Pattern of Shell with Sprayed 

Explosive Over Half the Circumference 

• /t^,  -ö^s  i<^ 

[80] 

by symmetry we double the energy obtained for the first quadrant ( <fi < *>x. ) > 
also the energy for fjf + S/i)< x.' < L. is the same as that for 

*.'<  *Sä (also by symmetry). 

The above functions have been programmed for the computer.  Some numerical 
results are given in previous reports '0 and some further results and com- 
parison with experiments will be given in the next section of this report. 



VII.     A more  exact  theory  for  axially  symmetric elastic-plastic deformation 
of cylindrical  shells 

A.   Uniform  Isotropie  shells 

The  equation of elastic  deformation of Isotropie  cylindrical  shells 
under  axisymmetric  loading  is 

»^ ^ ^- "*&'    **'*> (SU 
, * i • 

where D~   £'* ,   h = thickness, E = elastic modulus,  p  =  mass 

density,   Pfct)    ^  t^16 load distribution. 

This equation can be solved subject to boundary conditions at the 
edges x = 0, J2. and appropriate initial conditors.  For a uniform 
shell made of perfectly plastic material, the shell becomes plastic 
when the yield condition  is reached at a given locations, i.e. 
when 

C^c2"-^^^^^ ■ 07*"    f?** rö J        [82] 
If this condition occurs at the edge of a fixed beam then the boun- 
dary condition at the edge is 

w = 0 (edge deflection zero) ro-ji 

M ■ M0 (bending moment equal to plastic moment) 

If this plastic condition occurs at any other section then we must 
resort to continuity conditions for beams, i.e. 

X*^ --W/t   (deflection on the left of the hinge = deflection 
on the right of the hinge) 

/^t = AT^  (left bending moment = right bending moment)       ro/n 

(*\  ~   Q        (left shear = right shear) 

*-   y—   (bending moment equal to plastic moment) 
' 'L   ~    fie 

The finite difference computer program developed several years ago 
for beams can be applied directly to this problem by making changes 
in the yield condition. It is anticipated that the basic behavior of 
shells going into "ring type" deformation and center hinging can be 
ascertained directly from this theor/. 

B. Uniform anisotropic shells (including layered shells) 

The basic behavior of certain anisotropic shells under general non- 
axisymmetric loading was given by Flügge*31 and applied to some dynam- 
ic problems by this avthor.    The equation for axially symmetric 
lateral deformation can be written down immediately from these re- 
sults.  This equation is the anisotropic counterpa-*  f equation [81] 
and includes such factors as in-'tial external or 'r     rnal static 

■ 



pressure.  It is as follows: 

/- ^      -Ac        /- P'/0^      J [85] 

1-  X»- 

p* is the initial pressure in load/unit area, P* is the edge loading in 
load/unit length, ^ is the mass per unit area, ^f*,^) is the rad- 
ial pressure.  The appropriate values of the constants for sandwich, 
cross stiffened, and orthotropic shells are given in the previously cited 
reference.   One case of considerable interest is the layered shell which 
is not given specifically in the above reference  but the constants can be 
written down directly by using the work of Flügge  and this reference. 2 

First assume that each layer of the n layers is orthotropic and has a 
stress-strain law 

[86] 

Fig. 13  Layered Shell 

Then 
fl^^L**. where  ^v». ^-s  t^e elastic modulus in the x di- 

rection of the nth layer and ^"»v is the thickness of 
the layer. [87] 
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Pj-^LEtfji^.   where E^ is the elastic modulus in the ^direction of 
■•*      the nth layer 

A;« Ej* t 'W 

where /'w is the distance from the midsurface of the entire 
shell to the midsurface of the nth layer 

[88] 

[89] 

[90] 

[91] 

[92] 

[93] 

5^ »^ » JT^ »O 
and the other constants are 

f =/^  •?■/ , 4"-/ , /.A ,, f.-; , 
VlH.Some   simple  applications  and  comparisons with  experiment 

A.   Beams 

Consider the simple case of the uinform cantilever under blast from 
pentolite and let us apply the impulse theory, neglecting elastic ener- . 
gy.  As given earlier in the report the energy flux (energy per unit 
area) can be written in terms of the impulse per unit area as follows: 

"^J* >ti »   *****    jfif   **»+   *****     €*-r    kxr*"* 
[94] 

18 
The value which Goodman   obtained for the side on impulse per unit 
area was given in a previous section of this report and its value is 

where 

^   = atmospheric pressure  in ATM 

fiSi     r*>fliscC [95] 

* - v. tv ^ R = distance from explosion to target 

W = weight of explosive 

Applying the previously developed ideas of plastic deformation of hing- 
ing cantilever beams, the energy absorbed at the hinge is 

V = / r>(6)alS [96] 
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Thus 

Assume  a  constant hinge moment M0   (perfectly plastic case).     We obtain 

\y-n0& * ^ 

where w = width of beam 

(?7 = yield stress 

t = thickness of beam 

A = loaded area of beam 

[97] 

Using  the  appropriate  values   for  the energy  flux,   the  impulse,   etc.   we 
obtain   

J> = mass  density of beam material 

[98] 

Consider an aluminum beam 12" long, .091" thick and 1" wide.  The results 
for the tip deflection, d, given by the above relation and the corres- 
ponding experimental results16 are given in the following table 

Table I. Theoretical and Experimental Results for Cantilevers 

Experimental Tip 
Deflection 

9 + " 

7, 2" 

2.7" 

I" 

3r 1+' -r-3" -OS1' 
There are sufficient calculations shown in the table to illustrate the 
trend.  For small charges very close to the beam, i.e. for very short 
duration pulses where diffraction loading is of primary consideration, 
the impulse theory coupled with the rigid plastic assumption predicts 
good results.  However for large charges further away where gust load- 
ing has a substantial contribution the results predicted by impulse theo- 
ry and rigid plastic behavior are not good.  Therefore recourse must be 
made to the more complete theory such as the finite difference approach 
mentioned earlier. 

ge Weight D istance Theoretical Tip 
Deflection 

'*• 2.x' 9" 

I* J' 7./" 

"*.* *' *7" 

'^ X* 2.2" 
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B. Cylindrical shells 

1. Shells subjected to blast at various ranges 

a. Prediction using energy formula directly 

We assume perfectly plastic behavior of the material.  Thus the curves 
of Fig. 8 of the earlier reference  can be used directly.  For com- 
pleteness these curves are reproduced here in Fig. 14.  Some examples 
are given below which illustrate the application of the theory. 

(1) A charge weight of 389^ of pentolite is exploded 29'   away from 
a steel shell; the shell is 3"OD, 6" long, .019" thick and goes into 
a collapse pattern.  The problem is to predict the final deformation. 
The experiment showed ***/&  *c /> O 

The energy flux predicted by the formula given in an earlier section 
of this report is 

The total energy from the explosion will be 

The theory says that this energy is absorbed in plastically deform- 
ing the shell. Since we are assuming a perfectly plastic material, 
assume that Oj is the ultimate stress, which was found experimen- 
tally to be about 50,000 psi. 

Thus we obtain 
- \/ *SZ7OOKSJ w   »   —1      =. —    <s:  // 

Going into the curve, a v = 11 corresponds to a &
0
/Q   > > / for 

collapse of a shell with  ^'o    ~   2- •  This means that the theory 
predicts deflections which are much too high. 

(2) Next consider a charge weight of 8.4* at 8' away.  The shell is 
steel, 3"OD, 11.62" long, .019'thick (collapse pattern). The experi- 
ment showed a/0/0   X , 7 

The energy flux preoicted by the formula is 

Thus ä ./* •.«/•4 r-j«r J-. «"•   -A« 

Even in this case a V of 3.3 predicts collapse deformation which 
is much too great. 
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(3)   Next consider  l,l# at 3*   away   from the  steel  shell  3"  OD,   11.62"   long, 
.019"   thick with a  collapse pattern.     The  experiment showed   ^//O as, JT 

Ef     -  Aötf   * /o J   *^       .     v =  3.9 

Again  the  prediction   is  too  large. 

Prediction using  side on   impulse   to compute   energy 

Instead of working with   the energy  formula   supposing we use  the   side  on 
impulse1,2'i8   to compute   the  energy.     The ene-gy will   then be given by 

(1) Consider  the  first  shell   solved in  the previous  section.     For  this 
case  the  side  on impulse,        I        ,   is about 90 psi millisec,    thus 

Thus   

JT>*/O
3
 x. et* *<*       * 

This value of V   predicts  a deformation  of      ^ /o   ^   / ;  a 
deformation of       **/D   ~   / was   found experimentally. 

(2) Consider  the  second   shell   solved in  the  previous  section.     For this 
case  the   side  on impulse   is about  25 psi  millisec 

\/      ~     2Z.4-    x    i*    U.C2~     =    7P-0    mt*\ 

Coming over on  the  curve  of       ^/^   - ^f-       we obtain a    ^O/Q rx. , ^ 
The  experiment  gave     a value  of   ^z^) ~ - 7  

(3) For  the  third  shell X  ■-  14.5 psi millisec,^       R,]#^//,i.        V'X'.öli. 
Thus     **/&     for the  theory  is   .4.   Experiment shoved «^^ Ä • 5 

(4) Consider  another case of  a  steel  shell  exposed  to 8.4#  explosive  at 
5.8'.     The  shell  is   6"  diameter,   17.5"   long and   .035"   thick   and goes 
into  a collapse pattern.   The   side  on  impulse   is  about  30 psi  millisec. 

The     V      for  th|Ls case  is  about  .03  which  corresponds  to a   **o/o ^,+ 
The experimental value of dm/p was about   .5. 

(5) Now consider buckling  failure  of an  aluminum shell.     The  shell  is  3"OD, 
2"   long,    .008"   thick,subject  to an  explosion  of  1^  at  a  distance of 8'. 
We use an  experimentally determined     0^     of about  15000 psi.   Th3  assumed 
value  of k in  the buckling  formula   [79]    is k = ^ . 
These values were assumed  for  all  the  subsequent buckling calculations 
in this  reoort. 
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The side on impulse for this case is about 8psi millisec.  The calculated 
value of \7  i*  about .4.  Going into the curve we find that for buckling 
the value of 'v»/^. is about .05.  The experimental value of **'•/*.   for 
this test was found to be .08. 

(6) Next consider buckling of an aluminum shell S'^D, 5" long and .008" thick 
subject to an explosion of 1.1* at 10'.  The side on impulse is about 6 
psi millisec. The calculated value of ?  is about .3 which gives a •A^i/^»- 
of about .07. The experimental value was about .1. 

:(70 Lastly consider collapse of an aluminum shell 
thick subjected to an explosion of 115* at 17 

3"OD, 9" long, and .042" 
The <Tj  for this case 

was 50,000 psi.  The side on impulse is about 64 psi millisec.  The cal- 
culated v was about .31 giving a ^»/o ~. f .     The experimental value of 

^*/p        was about .6. 

2. Sprayed explosive 

In section IIB 3 of this report we discussed the behavior of shells under 
very short duration loading such as would be obtained from sprayed explo- 
sive.  It has been found experimentally that the fixed ended shell deforms 
into a pattern which corresp^  s to an abrupt change at the ends and an 
almost uniform deformation along the length.  Consider as a first approxi- 
mation that end effects are negligible.  The energy of deformation can 
then be written as follows: (assuming perfectly plastic behavior) 

crst*L /^/^-^r/^wj [99] 

fs^^lcfi 
Now for a uniform impulse over half the cylinder 

Evaluating the integrals contained in V  above, we obtain 

[100] 

[101] 

An aluminum cylinder was tested, the parameters of which were 

The experimental deformation was about V' under a measured impulse of about 
27 pr-:i millisec. 

Using the above relation we find that for     ö/A ■=, 2 3 (which corresponds 
to h"   deflection in a cylinder with a = 1.5") 

F     Ci 2.^- /»-ri. **>*{isec- 
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Thus the theory predicts reasonably well the impulse for a given deflec- 
tion for this particular test. 

C. Cpnclusions based upon experimental comparisons 

It is shown that the side on impulse criterion gives excellent results 
for beam deformation in the case of very small charges and short distance. 
For larger charges and distances we will have to resort to the more exact 
elastic-plastic theory using the differential equation. 

For cylindrical shells it seems that the side on impulse gives excellent 
results for rigid-plastic collapse and buckling behavior of all the shells 
under long or short duration blasts.  When more cases of sprayed explosive .' 
results become available, they will be compared with theory. 
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